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Abstract. Properties of infinite clusters in general percolation models are investigated. The 
number of infinite clusters is either zero, one or infinity. Results are found on the density of 
the various kinds of infinite clusters. In particular, ‘filamentary’ and ‘rough’ clusters, which 
individually do not have non-zero density, are studied with an eye toward ascertaining 
whether these exist in some models, and hence whether an infinity of infinite clusters is 
possible. Conjectures are presented on the behaviour of systems with an infinity of infinite 
clusters under scale transformations, and also on the way in which the presence of such 
clusters influences the prevalence of large finite clusters. 

1. Introduction 

It has generally been believed that with the onset of percolation, only a single infinite 
cluster exists. Heuristic arguments in favour of this assertion have been presented 
(Kikuchi 1970) although some authors in discussing large but finite volumes have 
distinguished between ‘having some cluster span the volume’ and ‘having a finite 
fraction of the sites part of the same cluster’. In two dimensions it is known that, at 
most, a single infinite cluster exists (Harris 1960, Fisher 1961). 

In this article we present rigorous results on the number and density of infinite 
clusters and on other properties as well. We show that, under quite general circum- 
stances, the only possibilities for the number of infinite clusters are: zero, one, infinity. 
Specifically, with probability one, it is impossible to have two or any greater finite 
number of distinct infinite clusters. 

Besides settling the question of having a finite number of infinite clusters our result 
raises the intriguing possibility that there can occur an infinity of infinite clusters. In 
pursuit of this issue we present a number of properties necessarily possessed by such 
clusters, should they exist. It must be confessed that our initial goal in studying these 
properties was to find a contradiction, but having failed to do so, we now suspect that an 
infinity of infinite clusters can occur, perhaps in sufficiently high dimension, perhaps 
with anisotropic connection probabilities. 

Detailed proofs of some of our results are being presented elsewhere (Newman and 
Schulman 1981) and in this article we only outline the precise arguments. In addition, 
we give material of a heuristic nature which does not appear in the other article. 
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2. Rigorous results on infinite clusters 

Although we phrase most of our statements in terms of the site percolation problem on 
a d-dimensional square lattice, our results are more general and apply to any system 
satisfying the following three hypotheses: 

(a) Translation invariance: If P is the probability distribution for configurations of 
the lattice (a measure on the sample space SZ = (0, and if T, is translation in any 
lattice direction j E Zd,  then TIP = P. 

(b) Translation ergodicity. If W is a translationally invariant event, then it either 
always occurs or never occurs (up to sets of measure zero). That is, if for j # 0, and 
W c n, T, W = W then either P( W )  = 1 or P( W )  = 0.  

(c) Anything can happen locally. If W is an event for which P( W )  # 0 ,  and if W‘ is 
an event whose configurations differ from those of W only in some particular finite 
region, then P( W’) f 0. 

Hypothesis (b) is especially powerful for our purposes. It is the same principle that 
plays a role in establishing that, although for finite systems with a given site occupation 
probability p there may sometimes exist a cluster spanning the entire volume and 
sometimes not, as the volume goes to infinity the existence or nonexistence of such a 
cluster becomes a sure property as a function of p alone. This is because the event 
‘having an infinite cluster’ is a translationally invariant set. 

Hypothesis (b) has as a consequence the following property which is more closely 
related to the usual concept of ergodicity. Let X be a random variable, X :  R + R, and 
let R, c Zd be the cube of edge length n centred on the origin. Finally, let E ( X )  be the 
expectation of X,  i.e. E ( X )  =IlI X ( w )  d P ( w ) .  Then 

lim n-d T J = E ( X )  wpo (with probability one). 
n+m 

For d = 1 this is the familiar notion of equality of time average and phase space average. 
In the site percolation problem, sites on Zd are independently occupied with 

probability p and a site i is connected to j if both i and j are occupied and there is a path 
of nearest-neighbour occupied sites from i to j .  This system satisfies all three above 
hypotheses, in particular it satisfies hypothesis (c) because change of status from 
occupied to unoccupied or vice versa on n sites can at most introduce a factor 
[p / ( l  - p ) ] * ”  which is non-zero for 0 < p  < 1. Hypothesis (b) is known to be valid for 
independent percolation; see Billingsley (1965), Theorem 1.2. 

Another system satisfying all three hypotheses is the king model with ‘spin up’ 
taken to mean occupied. For finite volumes the probability of a given configuration is 
proportional to 

where J (1 )  decreases sufficiently rapidly that 

c IJ(0 < 03. 
1 

Hypothesis (c) is then satisfied because changes in system configuration in a finite region 
lead to only finite changes in energy. 

Let C (  j )  be the set of sites connected to j E Zd. C (  j )  will be known as a cluster. For a 
set F let IF1 be the number of sites belonging to F. Let H be the set of all clusters. Let 
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Ho denote the set of infinite clusters, that is 

Ho = {C E HI IC1 = a}. 

Let IHol be denoted N o ;  N o  is the number of distinct infinite clusters. Our principal 
result is: 

Theorem 1. Either N o  = 0 wpo or N o  = 1 wpo or N O  = CO wpo. 
Proof. Let S ( k )  be the set of all lattice configurations which have exactly k infinite 
clusters, i.e., 

S ( k )  = {w E Szl No(w) = k}. 
Suppose for some k,  1 < k <a, the measure of S ( k )  is non-zero; that is, suppose there is 
a non-zero probability of finding exactly k infinite clusters. The property of having a 
particular number of infinite clusters is a translationally invariant property so that by 
hypothesis (b) it must always (i.e., with probability one) be the case that there are 
exactly k clusters (parameters such as p ,  d or h of our examples above are held fixed). 
Moreover, it can never (i.e., with probability zero) happen that there is exactly one 
cluster. We prove the theorem by using hypothesis (c) to show a contradiction, namely, 
that there is positive measure for S(l)  if there is for S ( k ) .  

Let R, be a d-cube of side n centred on the origin. L,et W, be the set of lattice 
configurations (i.e., points of 0) for which there are exactly k infinite clusters and all of 
them enter R,. For sufficiently large n the set W, must have non-zero measure (this 
follows since limn-,m W, J; S ( k )  and if W, had measure zero for all n, so would S ( k ) ) .  
Fixing this n,  let W be the set of lattice configurations obtained by taking each lattice 
configuration of W, and forcing all sites inside R, to be occupied (or all spins up for the 
Ising model) while leaving the configuration unchanged outside R,. By hypothesis (c) 
the measure of W is also non-zero since it difiers from W, in only a finite region. But 
configurations in W have but one cluster, providing the desired contradiction. 

Note that the proof breaks down for k = co since no R, can have a bit of each cluster. 
Let p be the fraction of all sites which are part of some infinite cluster. By ergodicity 

this equals the probability that any particular site (for example, the origin) is part of an 
infinite cluster. 

Proposition. If No # 0 then p > 0 (wpo). 
Proof. If p = 0 then the probability of any site being part of an infinite cluster is exactly 
zero, hence the probability of any countable union of sites being part of an infinite 
cluster is zero. But Zd is such a countable union. One consequence of this proposition is 
that if, as is generally believed, p = 0 at p c  (= percolation threshold) then there is no 
infinite cluster at pc .  (This does not contradict the possibility that the largest cluster in a 
region of size n d  goes to infinity with n.) 

In studying the possibility of having an infinity of infinite clusters it should be 
realised that hypotheses (a), (b) and (c) (which are all we use in our proofs) allow for a 
great variety of site occupation rules in addition to the examples we have given. For this 
reason it is plausible that some strange clusters could emerge. In particular we have 
found it useful to distinguish three sorts of infinite cluster, depending on their density. 
To define the density of a cluster C one wishes to study the limit of IC n R,l /nd for 
n +a (recall lR,j = n d ) .  Infinite clusters for which the limit superior and limit inferior 
of this object do not agree, do not have a density defined and we call these rough. When 
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the two limits agree and are positive, an infinite cluster is called dense. If the limits agree 
and are zero, then an infinite cluster is called filamentary. For any set S for which the 
limit IS n R , l / n d  exists, we call that limit the density of the set. 

By arguments similar to those used in proving theorem 1, we can show: 

Theorem 2. The number of filamentary clusters is either zero or CO. The number of 
rough clusters is either zero or CO. The number of dewe clusters is either zero or one. If 
there are any rough clusters, there is no dense cluster. The union of all filamentary 
clusters has a well defined density which is positive if there are any filamentary clusters. 
The union of all rough clusters has a well defined density which is positive if there are 
any rough clusters. 

We shall not indicate how the entire proof goes, but to show the recurrent use of 
ergodicity we give part of the proof. Suppose No = CO and consider the set of all clusters 
for which lim inf(lR, n C l / n d )  is positive. Part of the proof consists of establishing that 
there is at most one cluster in this set (for rough clusters this lim inf must be zero). 
Suppose there were more. Now the upper bound of the set of lim inf’s is some number, 
call it I? By ergodicity this number takes the same value for all (up to sets of measure 
zero) configurations. It is easy to see that there will always (wpo) be pairs of clusters the 
sum of whose lim inf’s exceeds p. But then (as in the proof of theorem 1) there are 
lattice configurations (with non-zero measure) for which in some particular R, these 
clusters merge and have lim inf greater than 7, a contradiction. 

Another interesting property of No = CO systems is the existence of ‘close encounter’ 
points and ’cutting’ points. A close encounter site is one which is empty but if filled 
would unite two or more previously distinct infinite clusters. A cutting site is an 
occupied site that is part of an infinite cluster and which if vacated would cause that 
cluster to break into two or more infinite clusters. Not only do these sites exist but they 
exist with finite density (by the same argument used in showing that p = 0 implies there 
is no infinite cluster). 

Another property of interest in percolation theory is the surface area of clusters and 
in particular the surface to volume ratio. We consider two kinds of surface: external 
surface and total surface. The total surface of a cluster consists of all vacant sites which 
are at a distance 1 from the cluster. The external surface consists of sites of the total 
surface which are part of an infinite cluster of vacant sites (where cluster formation for 
vacant sites obeys the same rules as for occupied sites). 

For external surface we have a result which may be considered surprising: if there is 
any external surface at all, then it has positive density. This implies that the surface to 
volume ratio is positive and in some sense the surface of the infinite cluster is of the same 
dimension as the cluster itself. The proof of this assertion involves the same measure 
theoretic argument used to show that p = 0 implies no infinite cluster. 

For total surface we show that the surface to volume ratio is (1 - p ) / p  for indepen- 
dent percolation. This same ratio obtains whether one looks at the total volume of the 
union of all infinite clusters and the associated surface or whether one looks at the single 
dense cluster (if there is one). Moreover, when No = CO the ratio of close encounter 
points to cutting points is this same number. 

This ratio had been anticipated by Hankey (1978) and Stoll and Domb (1978). 
Klein and Shamir (1980) had already obtained this result rigorously before us (it was 
also known to Aizenmann et a1 (1980)) and their proof also carries over to individual 
filamentary or rough clusters. The virtue of our proof is the use of a simple duality 
argument. To apply this we first note that the value (1 - p ) / p  for the surface to volume 
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ratio is equivalent to the validity of 

E ( X Y )  = E ( X ) E (  Y )  

where X is the indicator function of the event that the origin be occupied and Y is the 
indicator function of the event that the origin belongs either to the infinite cluster or to 
its surface. The duality argument is then used to show that X and Y are actually 
independent random variables. In the case of correlated percolation, where FKG 
inequalities are valid, we find that E ( X Y )  2 E ( X ) E (  Y ) ,  which implies that the surface 
to volume ratio is not greater than the ratio of vacant (spin-down) to occupied (spin-up) 
sites. This is true both for the aggregate of all infinite clusters and for the single dense 
cluster, if there is one. 

Another property that has attracted attention in percolation theory is the behaviour 
of large blocks of sites and the way in which properties of such blocks fluctuate about the 
mean. Properties of this sort are of interest for renormalisation group studies of 
percolation. It turns out that for systems obeying the FKG inequalities (which includes 
our two examples given above) if a certain correlation function is integrable then the 
number of sites in R,, belonging to infinite clusters has an asymptotically Gaussian 
distribution as n + C O ;  a similar result applies to the single cluster (if there is one). More 
precisely let Z, be the deviation of the number of sites in R, belonging to an infinite 
cluster from its expected value, pnd. Let K ( i )  be the correlation function or covariance, 
K ( i )  = Prob (both 0 and i belong to infinite clusters) - p 2 ,  and finally suppose 

U =  K(i)<co. 
i s Z d  

Then the random variable 
d / 2  112 Z I n  U 

converges (in distribution) as n + 00 to a Gaussian random variable of mean zero and 
covariance one. 

In some sense one expects filamentary or rough clusters to be of lower, perhaps 
fractal, dimension. To state this more precisely, we have found it useful to define the 
following quantities: 

G ( j )  = Prob(j  is connected to 0) 

The following properties can be established: 
If 

lim inf c G ( j )  = 0 ,  
jeaR,  

where aR, denotes the surface of R,, then No = 0. This is because the condition forces 
C(O), the cluster attached to the origin, to be finite (wpo) which shows that No = 0 (as in 
the proof that p = 0 implies No = 0). 

If 

(with iljii being the Euclidean length of j )  then all clusters are filamentary. If 
lim inf,,, Q, = 0, then there is no dense cluster. If all clusters are filamentary, then 
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Q, = 0. Finally, if there is any dense cluster (of density P d  > O), then 

Now use G ( j )  to define a ‘mean effective dimension,’ 

and define for each infinite cluster C, its effective dimension as, 

S ( C ) = S U P { ~ ’ ~  lim n - 8 ’ I ~ n ~ , ( = m } .  
n-m - 

Then it can be shown that for any infinite cluster 

H(C) G 6 (wpo). 

3. Scale transformations and renormalisation 

We now speculate on the way in which filamentary clusters would appear under a 
renormalisation group treatment. Suppose coordinate space scale transformations 
have been defined for the independent site percolation problem which includes as a 
parameter the original site occupation probability p .  Under scale transformations p = 0 
and p = 1 are expected to be attractors. In the usual situation p c ,  the percolation 
threshold, is a repeller (on the p axis) but now we must take into account the possibility 
that (in sufficiently high dimension) there is more than one threshold. For example, it 
seems plausible that there is some range p ;  < p  < p :  within which only filamentary 
clusters are present. The p :  would be the threshold for filamentary clusters while p :  
would mark the onset of a dense cluster (we neglect the possibility of rough clusters in 
this discussion). 

If this were the case, then by the usual arguments, scale transformations starting 
from p > p :  should lead top  = 1 while those for p < p ;  should send p to zero. Thus each 
of these points is a repeller insofar as transformations outside of ( p : ,  p : )  are concerned. 
But within that range it is not possible for both points to repel, unless theie is yet 
another fixed point, which we assume not to be the case. 

Which way does the arrow go-from p :  to p :  or vice versa? It seems that this 
depends on the nature of the scale transformation, and in particular we expect that 
various scale transformations find one or the other kind of critical point invisible. There 
is nothing startling in this suggestion. For example, a decimation transformation 
eliminating every second site on an Ising antiferromagnetic would preclude seeing 
staggered magnetisation. 

Our earlier remarks on dimension suggest that filamentary clusters are ‘thinner’ 
than the usually contemplated sort and that scale transformations which would hope to 
capture the order parameter associated with these clusters would need very generous 
conventions on when two sites are to be considered connected in the scaled system. 
Such a transformation beginning slightly above pk and for which pk is a repeller would 
go right past p :  as if it were not there. Similarly, a convention for site connection which 
had just the right sensitivity to pick out the onset of dense clusters would find 
filamentary clusters invisible and if the iteration began from p slightly less than p :  it 
would head towards p = 0 with no notice of p : .  
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This situation highlights one of the problems that invariably confronts the would be 
renormaliser. For percolation there is ambiguity in the rule to be used in deciding 
whether a rescaled site is occupied. Our suggestion is that when two conventions give 
different answers it may not always be appropriate to discard the calculation. 

Another possibility is that every point in the interval [pb, p : ]  is a fixed point. This 
situation could arise if there is an infinite correlation length throughout the interval. 

4. Systems which may show filamentarity 

It is rigorously known that two-dimensional site percolation has only dense clusters. It 
seems reasonable to suppose that with increasing dimension it will be possible for 
distinct clusters to avoid meeting each other and remain filamentary. A degree of 
anisotropy in connection rules can also aid in keeping clusters apart. For example, one 
candidate is directed percolation in three dimensions. With directed bonds, one of 
these dimensions can be considered a time axis and there is some preliminary numerical 
evidence (Gerola et a1 1980) that filamentarity occurs. 

On the other hand, for random graphs (Erdos 1973), which is in some sense an 
infinite dimensional mean field model, above the percolation threshold there is but one 
cluster. (This is a system of N points, each connected to any one of the others with 
probability x / N .  The value x = 1 is the critical value for percolation.) 

There is an indication that filamentarity may occur when p ( p  - ( p  - p C ) ’ )  is unity, 
which is the case for d 3 6. The heuristic argument for this is based on the total volume 
occupied by a cluster and its surface. 

5. Cluster sizes 

The prevalence of large finite clusters above p c  differs markedly from that below p c  and, 
of course, from the situation at p c  itself. Let Pk(p) be the probability of finding a cluster 
of exactly k sites (i.e., the probability that /C(O)/ = k). For p < p c ,  

thus Pk - exp(-ck) for some c. Above p c  there is a simple argument (Aizenmann et a1 
1981) showing that 

P k ( p )  3 exp(-ck‘d-l”d) 

for some c (not necessarily the same as that above). The argument uses the fact that 
there is an infinite cluster. Namely, by changes on the surface of a cube of side kl ld  
(which ‘costs’ the probability factor given above) one can separate a large cluster of 
volume k from the infinite cluster. For p sufficiently large it is also known that there is 
an upper bound for pk( p )  with the same k dependence. 

Now a dense cluster should intersect the walls of R, on the order of n d - l  places so 
that it is not surprising that the above estimate is the best possible. However, the ratio 
of surface intersections of R, to volume intersections for filamentary clusters should be 
smaller and one could use this too as a definition of dimension (although we do not know 
how this relates to the other definitions of dimension). Calling this dimension 8‘ we 
expect 

P k ( p )  -exp(-ck‘S’-l”S’ ) 
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for p ;  < p  < P E .  Intuition based on our earlier results on cutting points and close 
encounter points also suggests that when filamentary clusters are present, one is more 
likely to find big clusters which are not infinite. In some sense the range p ;  < p < pE is 
partway between criticality and the onset of dense clusters. At criticality there are no 
infinite clusters but many very large ones. For slightly larger p there are some rather 
thin infinite clusters and still quite a few very large finite ones. 

6. Remarks on essential singularities 

The above estimates of pk( p )  were first found by Kunz and Souillard (1978) and used by 
them to show the appearance of an essential singularity for a certain (analogue of the 
partition) function. Recently, Baker and Kim (1980) have found analogous estimates 
on the growth rate of the coefficients in the expansion of the magnetisation as a function 
of h (external field) in the Ising model. These estimates provide strong evidence for the 
existence of a singularity at h = 0 (hence at a first-order phase transition). It was noted 
by Baker and Kim and also by Lowe and Wallace (1980) that the growth rate is the same 
as that expected from the droplet model for first-order phase transitions. In this model 
one continues the free energy to the metastable range and finds an imaginary part for 
the free energy. The growth rate imposed by this imaginary part is the same as that seen 
by Baker and Kim. 

We wish to make a technical comment concerning limitations on the use of growth 
estimates for establishing the possibility and nature of an analytic continuation beyond 
a singularity even when those estimates are what have provided the proof of the 
existence of that singularity. It should be noted that this potential analytic continuation 
is of considerable interest and in the case of Baker and Kim would say a good deal about 
metastability. The point we wish to make is that changes in Taylor coefficients which 
are invisible from the point of view of growth estimates may give rise to a natural 
boundary which stops any analytic continuation. 

For the problem studied by Baker and Kim one wishes to know whether for a series 

with z = exp(-2ph), analytic continuation is possible around z = 1 (h = 0). The 
numerical results of Baker and Kim together with droplet model calculations suggest 
that 

ak - k-' exp(-ck") 

with g 2 0, c > 0, 0 < U  < 1 which is similar to the percolation model growth rate for 
p k ( p )  if we take U = (d - 1) /d .  Suppose we define a ;  by 

if k = n ! for some n exp( - k "') 
a ; = { ,  otherwise 

with U < U' < 1 ; then the series 

f aizk  
k=O 

has 121 = 1 as a natural boundary (this follows from a theorem of Hadamard (Dienes 
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1931)). Thus, even if the original series with coefficients ak has an analytic continuation 
around z = 1, the new series 

m 

would have no such analytic continuation. This new series represents an 'invisible' 
perturbation of the original one since 
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